The strong fractional choice number of 3‐choice‐critical graphs
نویسندگان
چکیده
A graph G $G$ is called 3-choice-critical if not 2-choosable but any proper subgraph of 2-choosable. strongly fractional r $r$ -choosable ( a , b ) $(a,b)$ for all positive integers $a,b$ which ∕ ≥ $a\unicode{x02215}b\ge r$ . The strong choice number c h f s = inf { : $c{h}_{f}^{s}(G)=\text{inf}\{r:G$ } $\}$ This paper determines the graphs.
منابع مشابه
The fractional chromatic number of mycielski's graphs
The most familiar construction of graphs whose clique number is much smaller than their chromatic number is due to Mycielski, who constructed a sequence G n of triangle-free graphs with (G n ) = n. In this note, we calculate the fractional chromatic number of G n and show that this sequence of numbers satis es the unexpected recurrence a n+1 = a n + 1 a n .
متن کاملOn the Strong Chromatic Number of Graphs
The strong chromatic number, χS(G), of an n-vertex graph G is the smallest number k such that after adding kdn/ke−n isolated vertices to G and considering any partition of the vertices of the resulting graph into disjoint subsets V1, . . . , Vdn/ke of size k each, one can find a proper k-vertex-coloring of the graph such that each part Vi, i = 1, . . . , dn/ke, contains exactly one vertex of ea...
متن کاملThe geodetic number of strong product graphs
For two vertices u and v of a connected graph G, the set IG[u, v] consists of all those vertices lying on u − v geodesics in G. Given a set S of vertices of G, the union of all sets IG[u, v] for u, v ∈ S is denoted by IG[S]. A set S ⊆ V (G) is a geodetic set if IG[S] = V (G) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong ...
متن کاملThe hull number of strong product graphs
For a connected graph G with at least two vertices and S a subset of vertices, the convex hull [S]G is the smallest convex set containing S. The hull number h(G) is the minimum cardinality among the subsets S of V (G) with [S]G = V (G). Upper bound for the hull number of strong product G⊠H of two graphs G and H is obtainted. Improved upper bounds are obtained for some class of strong product gr...
متن کاملThe Interactive Sum Choice Number of Graphs
We introduce a variant of the well-studied sum choice number of graphs, which we call the interactive sum choice number. In this variant, we request colours to be added to the vertices’ colour-lists one at a time, and so we are able to make use of information about the colours assigned so far to determine our future choices. The interactive sum choice number cannot exceed the sum choice number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2022
ISSN: ['0364-9024', '1097-0118']
DOI: https://doi.org/10.1002/jgt.22874